Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fernandez, J (Ed.)Antarctic krill (Euphausia superba) are a key component of the Antarctic ecosystem linking primary and some secondary production to higher trophic levels including fish, penguins, seals, and whales. Understanding their response to environmental stimuli therefore provides insights into the trophic ecology of Antarctic systems. This laboratory study quantified the influence of penguin guano, a presumptive predator cue, chlorophyll concentration and flow speed on krill swimming behavior. In addition, ingestion rates with and without guano were measured. Such inquiries are necessary to determine if predator risk cues modify krill activities in ways that have consequences for other members of the Antarctic trophic web. Krill often exhibited acute turns when guano was present and varied their swimming speeds more when guano was present. These are both indicators of avoidance behavior to the negative chemical cues represented by penguin guano. Similarly, krill’s ingestion rates dropped significantly for a prolonged period of time in the presence of guano. This decrease in feeding will have impacts on krill’s nutritional value to their predators, prey uptake rates (prey survival) and the sequestration of carbon to the deep ocean as krill decrease their defecation rates. This study supports the hypothesis that krill use chemical signals to detect and behaviorally respond to food and predation risk.more » « less
-
Abstract Marine microorganisms play a critical role in regulating atmospheric CO2concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation. To explore this observation further, we conducted a microcosm experiment using surface seawater collected from the Spring 2023 phytoplankton bloom in the Gulf of Maine. Unfiltered (natural community) and filtered (200 μm and 3 μm) seawater was sprayed with clay (20 mg L− 1and 60 mg L− 1) and incubated. All clay treatments led to a tenfold increase in TEP concentration. 16S rRNA gene amplicon sequence analyses of seawater and settled organoclay flocs showed the dominance of α-proteobacteria, γ-proteobacteria, and Bacteroidota. The initial seawater phytoplankton community was dominated by dinoflagellates followed by a haptophyte (Phaeocystissp.) and diatoms. Following clay addition, dinoflagellate cell abundance declined sharply while diatom cell abundance increased. By analyzing organoclay flocs for 18S rRNA we confirmed that dinoflagellates were removed in the flocs. The clay amendment removed as much as 50% of phytoplankton organic carbon. We then explored the fate of organoclay flocs at the next trophic level by feeding clay and phytoplankton (Rhodomonas salina) toCalanus finmarchicus. The copepod ingestedR. salinaand organoclay flocs and egested denser fecal pellets with 1.8- to 3.6- fold higher sinking velocity compared to controls. Fecal pellet density enhancement could facilitate carbon sequestration through zooplankton diel vertical migration. These findings provide insights into how atmospheric dust-derived clay minerals interact with marine microorganisms to enhance the biological carbon pump, facilitating the burial of organic carbon at depths where it is less likely to exchange with the atmosphere.more » « less
An official website of the United States government
